A coordinate gradient descent method for nonsmooth separable minimization

نویسندگان

  • Paul Tseng
  • Sangwoon Yun
چکیده

This is a talk given at ISMP, Jul 31 2006.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Coordinate Gradient Descent Method for Nonsmooth Nonseparable Minimization

This paper presents a coordinate gradient descent approach for minimizing the sum of a smooth function and a nonseparable convex function. We find a search direction by solving a subproblem obtained by a second-order approximation of the smooth function and adding a separable convex function. Under a local Lipschitzian error bound assumption, we show that the algorithm possesses global and loca...

متن کامل

Accelerated Mini-batch Randomized Block Coordinate Descent Method

We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...

متن کامل

A block coordinate gradient descent method for regularized convex separable optimization and covariance selection

We consider a class of unconstrained nonsmooth convex optimization problems, in which the objective function is the sum of a convex smooth function on an open subset of matrices and a separable convex function on a set of matrices. This problem includes the covariance selection estimation problem that can be expressed as an `1-penalized maximum likelihood estimation problem. In this paper, we p...

متن کامل

Smooth minimization of nonsmooth functions with parallel coordinate descent methods

We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss (“AdaBoost problem”). We assume the input data defining the loss function is contained in a sparse m× n matrix A with at ...

متن کامل

A Modified Fletcher-Reeves-Type Method for Nonsmooth Convex Minimization

Conjugate gradient methods are efficient for smooth optimization problems, while there are rare conjugate gradient based methods for solving a possibly nondifferentiable convex minimization problem. In this paper by making full use of inherent properties of Moreau-Yosida regularization and descent property of modified conjugate gradient method we propose a modified Fletcher-Reeves-type method f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2009